	Parameter	Statistic	Null Hypothesis in Hypothesis Test	Standard Error	Test Statistic for Hypothesis Test	z or t ?	Degrees of Freedom	Conditions for Inference
Mean of a Population (known standard deviation)	μ	\bar{x}	$\mu = \mu_0$	$rac{\sigma}{\sqrt{n}}$	$\frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$	z		σ known
Mean of a Population (unknown standard deviation)	μ	$ar{x}$	$\mu = \mu_0$	$\frac{s}{\sqrt{n}}$	$\frac{\bar{x}-\mu}{s/\sqrt{n}}$	t	n-1	n < 15 + Normally dist. pop.: OK $n < 15$ + skewed dist./outliers.: not OK
Matched Pairs	$\mu_{ m diff}$	$ar{x}_{ ext{diff}}$	$\mu_{\rm diff} = 0$	$rac{s_{ m diff}}{\sqrt{n}}$	$\frac{\bar{x} - \mu}{s_{\rm diff}/\sqrt{n}}$	t	n-1	$n\geq 15$ + strong skew./ extreme outliers.: not OK $n\geq 40\colon {\rm OK}$
Means of Two Populations	$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\mu_1=\mu_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	t	\rightarrow	Same as above, replacing $n \text{with} n_1+n_2$ $n_1 \geq 5 \& n_2 \geq 5$ $n_1, n_2 \text{ roughly the same size}$
		<u>.</u>			$\mathrm{df} = \frac{1}{\frac{1}{n_1 - 1} \left(\frac{s}{n_1}\right)}$	$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_1^2}{n_1}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2} + $	$\frac{\frac{s_2^2}{n_2}}{\frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$	

	Parameter	Statistic	Null Hypothesis in Hypothesis Test	Standard Error for Confidence Interval	Standard Error for Hypothesis Test	Test Statistic for Hypothesis Test	z or t ?	Conditions for Inference
Proportion of a Population	p	\hat{p}	$p = p_0$	$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\sqrt{\frac{p_0(1-p_0)}{n}}$	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	z	CI: at least 15 successes and 15 failures HT: $np_0 \ge 10$ $n(1-p_0) \ge 10$
Proportion of a Population (plus four)	p	$ ilde{p}$		$\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}$			z	$n>10$ Confidence Level $\geq 90\%$
Proportion of Two Populations	$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$p_1 = p_2$	$\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	z	CI: at least 10 successes and 10 failures in each sample HT: at least 5 successes and 5 failures in each sample
Proportion of Two Populations (plus four)	$p_1 - p_2$	$\tilde{p}_1 - \tilde{p}_2$		$\sqrt{\frac{\tilde{p}_1(1-\tilde{p}_1)}{n_1+2} + \frac{\tilde{p}_2(1-\tilde{p}_2)}{n_2+2}}$			z	$n_1 \ge 5$ $n_2 \ge 5$