

Introduction to Testing March 15th, 2019

What is testing? Magessh Test prep made simple Notes: Now with 10 tests! CollegeBoard The Official Second Edition

Updated' Access to exclusive online tools

SAT

What is testing? Magessh Test prep made simple Now with 10 tests! CollegeBoard The Official Second Editio

Updated' Access to exclusive online tools

SAT

Hypotheses

Hypotheses

Test statistic

or Confidence Interval

Hypotheses

Test statistic

or Confidence Interval

and

Conclusion

• Null hypothesis

• The status quo

Alternative hypothesis

A competing opinion

Notation

lacksquare

- $H_0: \mu = 10$
 - $H_1: \mu \neq 10$

• One sided

- $H_0: \mu \ge 9$ $H_1: \mu < 9$
- Two sided
 - $H_0: \mu = 10$ $H_1: \mu \neq 10$

We are not proving anything in hypothesis tests. We are only saying whether or not we reject the null hypothesis based on our data.

DISCLAIMER FOR THIS ENTIRE SECTION AND BEYOND

because our data can tell another story... but as all samples work, not all samples tell the truth. We just understand probabilities associated with finding significant results.

WE CAN ONLY SUGGEST THAT THE NULL HYPOTHESIS BE REJECTED

Confidence Interval

• Three parts

- Sample estimate (either sample mean or proportion)
- Critical value $z_{\alpha/2}$ found using qnorm()
- Standard error (see associated) sampling distribution)
- Format

$\bar{x} \pm (Margin of Error) = \bar{x} \pm 1.96(SE)$

For 95% confidence intervals

Test statistic

• **z tests** The most basic of the tests we are covering in this class!

- 1. Check conditions
 - You have a SRS
 - The underlying population distribution is normal
 - You know the true population standard deviation
- 2. Make a test statistic
- 3. Calculate the p-value
- 4. Interpret p-value
- 5. Conclude (Will you reject the null?)

$$\bar{x} - \mu_0$$

$$\sigma/\sqrt{n}$$

$$x - \mu_0$$

p-value

- The probability of rejecting the null hypothesis given that the null hypothesis is true
- The probability of observing our data or more extreme given that the null is true
- We'll visualize this on the normal distribution for z-tests
- In general, smaller p-values will imply that we have more evidence against the null hypothesis

There is a very specific relationship between confidence intervals and ztests. For the same data and the same hypotheses, the conclusions of the analyses will be the same.

Relationship

A 95% confidence interval corresponds to a z test with $\alpha = 0.05$.

Confidence Intervals

- Test statistic

• We are 95% confidence that our true parameter lies within the interval.

• [Report interval.] This interval was made using a method that creates confidence intervals that contain the true parameter.

• Our p-value was [this value]. That is, there is a [this value * 100]% chance of observing the data we did or more extreme under the null hypothesis.

Confidence Intervals

• Test statistic

Conclusion

• If our null hypothesized parameter is not within our confidence interval, then we reject the null.

• If p-value is less than significance level (or very small), then we reject the null hypothesis

Recap... your test will require these things.

Hypotheses

Test statistic

or Confidence Interval

and

Conclusion

Why is this true? Your hypotheses must be made before seeing the data.

If you don't, you're treading into a bad place.

If you don't, you're treading into a bad place.

If you don't, you're treading into a bad place.

Meet this guy.

Meet this guy. He's a mad scientist.

Meet this guy. He's a mad scientist. He will do anything to prove a point.

Meet this guy. He's a mad scientist. He will do anything to prove a point.

Joobika, 300 lbs

Jumba

Current location: Hawaii

The golden rule in research is that if you have a p-value of less than 0.05, then you found a significant discovery.

By chance alone, we may be able to get a small p-value based on your sample.

People who abuse the above are called "p-hackers".

The golden rule in research is that if you have a p-value of less than 0.05, then you found a significant discovery.

By chance alone, we may be able to get a small p-value based on your sample. If you just keep running your experiment a million times, then at least one of your tests can be significant.

- And by dishonesty, you can fudge your data.
 - People who abuse the above are called "p-hackers".

Those who abuse the science of p-values are called "p-hackers".

Top Cornell food researcher Brian Wansink did it.

Review

Binomial

You can approximate binomial as normal based on certain conditions.

When n is large (and np>10 n(1-p)>10), then Bin(n,p) is approximately N(np, sqrt(np(1-p))).

> mean(binomial)=np sd(binomial)=np(1-p)

Both are discrete distributions

Poisson

Norma

This is continuous.