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Abstract 

Endometriosis is an estrogen-dependent condition that affects nearly 10% women of 

reproductive age and is characterized by chronic pain and inflammation. Currently, it can only be 

fully diagnosed at surgery and has an average latency period of 11 years before it is diagnosed 

[1]. Profiling the deviations in gene expressions from normal endometrium to endometriosis is of 

high value towards understanding the disease and identifying diagnostic and therapeutic targets. 

We utilized a publicly available microarray data containing archived endometrial samples from 

women with different stages of endometriosis to derive gene expression signatures of the disease. 

We use the results of our differential analysis to construct a classification models to predict 

endometriosis for a given sample.  

1. Introduction 

Endometriosis is a painful gynecological disorder that affects nearly 10% of women worldwide 

[1]. It is an estrogen-dependent condition characterized by the ectopic growth of endometrium 

i.e., the endometrium, which is normally found as a tissue in the inner lining of the uterus, grows 

and functions outside of the uterus. This displacement of the endometrial tissue causes growths 

and lesions in the abdomen and pelvic cavity, leading to chronic pain and inflammation that is 

disruptive to a woman’s physical and social well being.  

Currently, it can only be fully diagnosed at surgery, therefore adding on average a latency 

period of 11 years before it is diagnosed. The lack of research in this domain and scarce 
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knowledge of the physiological underpinnings, that cause and aggravate endometriosis, are 

major roadblocks in the development of novel diagnostics and therapeutics for this disease. 

Recent studies have suggested that abnormalities in the regulation of specific genes [3] 

are involved in the development of endometriosis and exploring these anomalies is of high value 

in understanding the disease and identifying diagnostic and therapeutic targets. Our goal is to 

perform differential gene expression analysis between samples with normal endometrium and 

endometriosis using microarray data and use those results to build classification models that 

predict the presence of the disorder. 

Tamaresis, et al. [1] developed menstrual cycle phase dependent decision tree models 

using differentially expressed genes based on t-tests. Bakhtiarizadeh, et al. [2] similarly chose 

differentially expressed genes. The selection of differentially expressed genes in this manner 

assumes the normality of gene expressions.  

Skew in the endometrial gene expressions violate this assumption. Instead of t-testing for 

selection of DE genes, we propose to use a well-known method of 2-fold group mean difference 

[4] and a Mann-Whitney U test to select DE genes. With the two collections of genes selected by 

these two methods, we aim to develop two sets of machine learning models that accurately 

classify patients as with endometriosis (E) or no endometriosis (no E) regardless of menstrual 

cycle state comparably to the classifiers in Tamaresis et al. 

By building and comparing three classification models, we will assess which models are 

most accurate as well as if the selected core genes are useful predictors in outcome of 

endometriosis. Tamaresis et al. [1] built Classification and Regression Trees (CART) to classify 

samples into five pairwise outcomes, using menstrual phase cycle and 21,734 probes as their 

predictor variables. With so many predictor variables applied to CART, overfitting to the data 

may be an issue. Furthermore, none of the five pairwise classifications included endometriosis 

versus no endometriosis. As a result, we wanted to see if utilizing other methods used in 

high-dimensional genomics contexts might perform better at predicting presence of 

endometriosis without the risk of overfitting. By using K Nearest Neighbors, Random Forests, 

and Support Vector Machines, we used gene expression levels to predict clinical outcome of 

endometriosis.  
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2. Data 

Tamaresis et al. [1] analyzed large scale gene expression using microarray data available from              

UCSF archives measured by the Giudice Lab which contain measurements on 148 subjects and              

54,665 probe measurements. The 148 patients were labeled as either with endometriosis or not.              

Of the 77 patients that had endometriosis, 28 patients were classified as having minimal to mild                

symptoms and 49 were classified as having moderate to severe symptoms. The remaining             

patients did not have endometriosis and were classified as whether they had uterine pelvic              

pathology (n=37) or not (n=34). Bakhtiarizadeh, et al. [2] studied a subset (n=105) of the same                

array data to examine weighted gene co-expression networks. We accessed the original data from              

Tamaresis, et al. [1] on NCBI Genbank with accession number GSE51981 and downloaded in              

CEL format for analysis. 

The principal-component-analysis (PCA) plot for the top two principal components on           

binary (endometriosis vs. no endometriosis) is shown in Fig. 1, while the PCA plot for four                

categories (Minimal/mild, moderate/severe, no uterine pelvic pathology (N-UPP) and uterine          

pelvic pathology (UPP)) is shown in Fig. 2. Corresponding dendrograms and heatmaps for the              

data are attached in the appendix, in Supplemental Figures 7, 8, 9, and 10, respectively.  

 

Figures 1 & 2. PCA with Two Genotype Tags for Unnormalized Data (Fig 1, left) and PCA by 

Severity for Unnormalized Data (Fig 2,right) 
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Applying PCA on the unnormalized gene expression data, we do not see a clear distinction               

between the categories of samples, except for a clear grouping of the N-UPP samples at the top                 

left of the plot.  

 

3. Methods 

3.1 Normalization 

Our method of choice for normalization is called the GCRMA or the Gene Chip Robust 

Microarray Averaging method. It is a package from Bioconductor that is used in the 

normalization of microarray data and is based on the method of RMA (Robust Microarray 

Averaging). We used GCRMA to create an expression matrix from the the probe level 

Affymetrix data. The raw intensity values are background corrected, log2 transformed, and 

quantile normalized. The presence of noise due to non-specific binding is a considerable problem 

in the analysis of microarray data. We preferred GCRMA over other methods of normalization 

because, (1) like RMA, it adjusts for background intensities including optical noise and 

non-specific binding and (2), it uses specific probe sequence information to estimate probe 

affinity to non-specific binding (NSB) and get accurate expression measures.  

PCA plots for the binary data (endometriosis vs. no endometriosis) and the four 

categories (Minimal/mild, moderate/severe, no uterine pelvic pathology (N-UPP) and uterine 

pelvic pathology (UPP)) after normalization are presented in Figures 3 and 4, respectively.  
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Figures 3 & 4. PCA by Endometriosis for Normalized Data (Fig. 3, left) and PCA by Four 

Categories for Normalized Data (Fig. 4, right) 

 

We do not see any improvements in the grouping of the samples after normalization but we                

continue to see the same distinction for the N-UPP samples, as seen in the unnormalized data.                

The corresponding dendrograms and heatmaps for normalized data are provided in Supplemental            

Figures 1, 2, 3 and 4.  

 

3.2 Preprocessing 

Low variance probes were defined as probes with measurement ranges that did not fall 

outside of 3 standard deviations of the mean or those that had a standard deviation of zero; these 

were removed from the dataset, reducing our dataset size from 54,675 probes to 15,430 probes. 

The remaining probes were translated into gene symbols using the Affymetrix library 

hgu133plus2. Genes with multiple representations were averaged into single column 

representations, allowing each gene to appear only once for each sample, thus, further reducing 

the data set to 14,822 columns of probes and genes. For uniformity, we will refer to the columns 
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of our dataset as “genes” although they contain both genes and probes (that were not matched to 

any genes). 

 

3.3 Selecting differentially expressed genes 

For comparison, we selected differentially expressed genes using (1) the nonparametric 

Mann-Whitney U test and (2) 2-fold mean difference between E and No E samples. 

Mann-Whitney Test. Gene expressions for our data contained some skew (Supplemental 

Figure 5), thus violating (although not harshly) assumptions necessary to conduct t-tests for the 

selection of differentially expressed genes. Instead of a t-test, similar to the study done by 

Vengatesan et al [12], we favored a Mann-Whitney test that does not require the assumption of 

normality. We tested the following hypotheses. 

Gene expression is independent of endometriosis.Ho :  

Gene expression is not independent of endometriosis.H1 :  

After calculating p-values under the null hypothesis that a given gene expression is not 

independent of endometriosis and correcting for False Discovery Rates, 7,375 genes with a 

p-value of less than 0.05 were selected as differentially expressed and are presented in 

Supplemental Table 1. 

2-fold Mean Difference. DE genes were also selected using two-fold mean difference 

between E and No E subjects. For each category, the mean gene expression was calculated. The 

difference of mean expressions between the two categories was taken. 

og (E/No E)M = xE − xNo E = l 2  

A = x  

The MA plot (Supplemental Figure 6) showed variance smaller toward more extreme values and 

lacked curves, therefore we have further reason to believe our normalization procedure worked 

well on our data. Under this criterion, 382 DE genes were selected for values of M that exceeded 

1, implying a mean two-fold increase between E and No E for the selected gene/probe. The 

genes from this method are available in Supplemental Table 2. The two generated sets of genes 

were then used to create classifiers for E v. No E. 
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PCA plots for the selected Mann-Whitney DE genes are presented in Figures 5 and 6. 

These plots failed to show clear patterns between the endometriosis categories. Therefore, we 

opted to classify our samples for E v. No E using machine learning methods. The corresponding 

dendrograms and heatmaps for normalized data are provided in Supplemental Figures 11, 12, 13 

and 14.  

 

 

Figures 5 and 6. PCA plots for DE genes data for a random sample (Fig. 5, left for two classes 

for endometriosis and Fig. 6, right for four categories of samples) of the Mann-Whitney DE 

genes do not show clear patterns. 

 

3.4 Classification models 

Three classification models were built (on both sets of DE gene data) to assess how 

accurately our two sets of DE genes can predict the presence or absence of endometriosis. In 

particular, k-nearest neighbors (KNN), Random Forests, and support vector machine (SVM) 

were applied and compared to one another. Cross-validation (CV) was used to build the KNN 

and SVM models, while Random Forests used out-of-bagging and hold-out validation to 

determine optimal number of variables and number of trees, respectively. All model accuracies 

were then assessed using hold-out validation on a separate validation set of the original data 

(Supplemental Figure 15). Due to the small sample size, we built two of each model: one model 

used 90/10 hold-out validation (test set = 15 samples) while the other used 80/20 hold-out 
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validation (test set = 30 samples) in order to increase the size of the validation set. As a result, 

two models for KNN, RF, and SVM were built and assessed. Finally, all models were built using 

both DE gene datasets (selected by the Mann-Whitney test and 2-fold mean difference method) 

to compare prediction accuracy between both sets of DE genes. 

K-Nearest Neighbors. KNN is a simple and popular model that has been used in previous 

clinical outcome, gene-expression classification problems, including in predicting outcomes of 

breast cancer [4] and success of hepatitis treatment [5]. Prediction accuracy in this previous work 

has reached rates at or above 80%. KNN uses a distance metric and majority vote to classify an 

observation based on the dominant class of its k neighbors. In addition to its simplicity and 

widespread use, we selected KNN because as a nonparametric model, it does not require 

distributional assumptions of the data. k-fold cross-validation was applied to a training set in 

order to build the optimal model and select the value of k, which was then assessed on a separate 

test set. In particular, two KNN models were built, using a different training vs. test set divisions. 

The first model utilized a test set comprising 10% of the original data and 5-fold CV on the 

training set to build the model, while the second model relied on 20% of the original data as the 

test set and 4-fold CV on the training set to build the model. 

Random Forests. Random Forests were the second classification model applied to the 

data. Similar to KNN, Random Forests require no assumptions about the data distribution and 

have become more frequently used in the context of high-throughput -omics platforms [6]. In a 

report by Lee et al. [7], RF outperformed the remaining machine learning methods they had 

applied in predicting early-stage ovarian cancer in the analysis of mass-spectrometry data. 

Additional attractive features of the model within the context of high-dimensional genomics data 

include that Random Forests avoid overfitting, particularly when the number of features 

outnumbers the number of samples (large p, small n) [8] and the model returns variable 

importance, a feature that can provide further information about the top differentially expressed 

genes [9]. A Random Forest is a collection of ‘n’ unpruned Classification and Regression Trees 

(CART), which are then all averaged to obtain a new prediction. RF uses bootstrapping and 

out-of-bag (OOB) sampling to avoid overfitting and obtain an an optimal number of variables 

(mtry) to use at each decision split. As a result, cross-validation is not needed to tune the mtry 
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parameter. However, the bootstrapping/out-of-bagging  does not tune for number of trees (ntree), 

and this feature must be selected before building the model. In order to obtain an optimal number 

of trees, we utilized hold-out validation by finding the optimal ntree on a training set, and 

applied this to a separate validation set to obtain an overall accuracy. Once again, two hold-out 

validation methods were used (80/20 and 90/10) and thus, two RF models were built on each set 

of DE gene data. 

Support Vector Machines. SVM is a popular method that has recently been expanding its 

use in genomics classification, particularly in the context of cancer outcome [10]. Advantages to 

SVM include that it is more powerful than other machine learning methods in recognizing subtle 

patterns in data [10], which may bode well for gene expression values. Additionally, similar to 

RF, SVM is effective in high-dimensional spaces [11]. Support vector machines create an 

optimal decision boundary/hyperplane between observations of binary classes. Linear SVM was 

applied to the data, and the width of the decision margin (cost) was tuned using the same 

cross-validation method as applied to KNN. 

 

4. Results 

4.1 Normalization 

Figure 7 shows the effect of normalization for a random sample of n = 20 for all 54,675 

probes. 
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Figure 7. Boxplot showing effect of normalization after GCRMA 

 

4.2 Differential expression results.  

Top genes using Mann-Whitney are listed in Supplemental Table 1, while top genes 

using 2-fold mean difference are listed in Supplemental Table 2. The two methods yielded 

similarly selected DE genes. Of the 382 genes selected using the 2-fold mean difference, 374 of 

them were also selected by the Mann Whitney test. 

 

4.3 Classification Results. 

Optimal parameters for the three models are presented in Supplemental Table 3. 

Accuracies for the three models on the DE genes obtained using 2-fold mean differences are 

presented in Supplemental Table 4. The top five important variables (genes) generated by the 

Random Forests models are presented in Supplemental Table 5. For both the 90/10 and 80/10 

hold-out validation methods, all accuracies are larger than 70%. In the 90/10 validation method, 

all three methods performed in the same manner on the test data; given a small test set of n = 15 
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samples, it is not surprising that similar error rates were obtained. When comparing methods on 

the 80/10 set, SVM outperforms KNN and RF.  

Accuracies for the three models on the DE genes obtained using the Mann-Whitney 

method are presented in Supplemental Table 4, with corresponding optimal parameters presented 

in Supplemental Table 3. Similarly, SVM outperforms the remaining two models. Accuracies 

across all three models are lower for the 90/10 validation set while they are higher for the 80/20 

set. Comparing across both datasets (2-fold mean difference and Mann-Whitney), SVM 

consistently outperforms the other two models. 

We compared our prediction accuracies to those obtained by Tamaresis et al. The 

classification trees built by Tamaresis et al. [1] obtained validation set accuracies spanning 93% - 

100% when using 21,734 predictors, including the stage of the menstrual phase in addition to 

probe expression levels. However, full comparisons cannot be made because Tamaresis et al. did 

not include E vs. no E as one of their pairwise classifications; in addition, they used a different 

model (CART) and different predictor variables. 

 

5. Discussion 

The results of our normalization indicate some some skew (as explained by an overall 

low median value and large number of outliers). We have, therefore, used the results of gcRMA 

with caution that we are introducing some bias into our data. In further analyses, we have tried to 

use methods that do not assume normality, wherever possible.  

Selected genes from the Mann-Whitney test were compared with the genes used by 

Tamaresis et al. to classify E v. No E UPP+ and E v. No E UPP-. Tamaresis used a combined 

total of 12,057 genes to classify their samples for disease presence. Our Mann-Whitney test 

identified 7,375 genes (38% less genes), of which at least 55.35% were included in the 

Tamaresis classifiers. 382 genes (96.8% less genes) were selected by the 2-fold mean increase 

method, and 54.19% were included in the Tamaresis classifiers. The contrast between the genes 

selected by our methods was quite large considering that 12,057 genes were selected by 

Tamaresis et al. and we included much less where we would expect much more of our selected 
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genes to be in common with Tamaresis. Our selection of DE genes, despite the inconsistency 

with Tamaresis, was able to create moderately accurate classifiers for E and No E samples. 

The classification models yielded prediction accuracies as high as those in previous 

literature. While the accuracies were higher on the 80/20 hold-out method using the 

Mann-Whitney method, it is possible that overfitting had occurred because the models relying on 

the Mann-Whitney method data used 7,375 predictor genes, as compared to the 382 predictors 

from the 2-fold mean difference method data. While we attempted to reduce the overfitting of the 

classification models by using cross-validation, it is best to apply the models to new data in the 

future in order to further circumvent such overfitting in the prediction accuracies. Additionally, 

while the CART models built by Tamaresis et al. yielded up to 100% prediction accuracies, they 

risk overfitting due to the use of single decision trees instead of Random Forests and the 

inclusion of 21,734 predictor variables. In contrast, our models still returned relatively high 

accuracies, while relying on less information. 

Future classification models can mimic Tamaresis et al.’s decision to include menstrual 

cycle phase as a predictor. However, even without the menstrual phase as a predictor, models 

solely using core genes as predictors may provide just as much information in predicting clinical 

outcome. Additionally, future work and models should consider the source of data collection. It 

is possible that the sample from UCSF is not representative of all patients, and may introduce 

bias with respect to location and health disparities. Finally, we performed our analysis under the 

assumption that the experimental information was collected accurately and consistently. If the 

experimental data was not, in fact, collected accurately, this may have implications on our 

statistical results.  

 

6. Conclusions  

The two methods of selection for differentially expressed genes yielded similar results. 

374 out of 382 of the DE genes (97%) selected by the 2-fold mean difference method were also 

considered DE by the Mann-Whitney test. Of the classifiers built from these two datasets, SVM 
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with a cost of c = 0.01 outperformed KNN and RF for correctly classifying the presence or 

absence of endometriosis achieving a highest accuracy of 93.33% and a lowest accuracy of 

76.7% using the 20% and 10% validation sets with Mann-Whitney DE genes. However, all three 

methods performed moderately well (>70%) on all validation sets. 
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Supplemental Tables and Figures 

Figures 

 

Figure 1. Cluster Dendrogram by Endometriosis for Normalized Data (We only see clusters for 

Non-Endometriosis) 

 

Figure 2. Cluster Dendrogram by Severity for Normalized Data (We only see clusters for 

Non-Endometriosis) 
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Figure 3. Heatmap by Endometriosis for Normalized Data 

 

 

Figure 4. Heatmap by Severity for Normalized Data 
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Figure 5. Randomly selected gene expression histograms. 

Randomly selected histograms are shown to examine normality. Some plots show near 

symmetry. Others are bimodal or skewed. USP3.AS1 showed a strong peak near 2.5. 

 

 

Figure 6. MA plotThe average gene expression was plotted against the mean difference of gene 

expressions per group. There is less variance with increasing average. We also see that the data 

are centered well around 0. 
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Figure 7. Cluster Dendrogram by Endometriosis for Unnormalized Data 

 

 

Figure 8. Cluster Dendrogram by Severity for Unnormalized Data 
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Figure 9. Heatmap by Endometrosis for Unnormalized Data 

 

 

Figure 10. Heatmap by Severity for Unnormalized Data 
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Figure 11. Cluster Dendrogram by Endometriosis for DE Genes Data 

 

 

Figure 12. Cluster Dendrogram by Endometriosis for DE Genes Data 
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Figure 13. Heatmap by Endometriosis for DE Genes Data 

 

Figure 14. Heatmap by Severity for DE Genes Data 
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Figure 15. Classification model and assessment validation scheme 

  

 



 

 

24 

Tables 

Table 1. Differentially expressed genes via Mann-Whitney Test 

DCAF16 ABHD17B 

HAUS2.1 MAP4 

CDC27 MYLIP.1 

ZBTB5 230580_at (Probe) 

EMSY.1 IL13RA1.3 

ADAT1 LOX.1 

These are ordered by p-value significance and non-exhaustive. These are 12 of 7,375 DE genes. 

 

 

 

Table 2. Differentially expressed genes via 2-fold mean difference 

DIO2 CPM.2 

PCSK5.1 OLFM4 

FOS CADM1.1 

EGR1.2 NMT2 

FOSB PCSK5 

SCGB3A1 ANK2 

These are ordered by highest mean expression difference. These are 12 of 382 DE genes 
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Table 3. Optimal parameters associated with classification models 

 Parameters1 

 2-fold mean difference 

DE genes 

Mann-Whitney 

DE genes 

Method 80/20 hold-out 

validation 

90/10 hold-out 

validation 

80/20 hold-out 

validation 

90/10 hold-out 

validation 

KNN k = 51 k = 44 k = 13 k = 11 

RF ntree = 400 

mtry = 17 

ntree = 250 

mtry = 20 

ntree = 250 

mtry = 65 

ntree = 550 

mtry = 11 

SVM cost = 0.01 cost = 0.01 cost = 0.01 cost = 0.01 

1. Parameters were tuned using k-fold cross-validation (k = 4 for 80/20 and k = 5 for 90/10) on 
the hold-out training set 
 

 

Table 4. Test accuracies associated with classification models 

 Test accuracy 

 2-fold mean difference 

DE genes 

Mann-Whitney 

DE genes 

Method 80/20 hold-out 

validation 

90/10 hold-out 

validation 

80/20 hold-out 

validation 

90/10 hold-out 

validation 

KNN 0.700 0.867 0.800 0.633 

RF 0.767 0.867 0.867 0.533 

SVM 0.833 0.867 0.933 0.767 
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Table 5. Top 5 Important Variables (DE Genes) Returned by Random Forests 

 2-fold mean difference 

DE genes 

Mann-Whitney  

DE genes 

Rank1 of 

Variable 

80/20 hold-out 

validation 

90/10 hold-out 

validation 

80/20 hold-out 

validation 

90/10 hold-out 

validation 

1 MAP4 DCAF7.2 ZBED6 ZBED6 

2 CDC27 MAP4 244470_at HAX1 

3 DCAF16 HECTD1 HECTD1 1556818_at 

(Probe) 

4 HAUS2.1 HAUS2.1 C2CD3 PMS2P5 

5 EMSY.2 CDC27 242787_at ZNF709 

 

1. Rank was based off of ‘mean decrease accuracy’ 

 


